t^2+23t-14=0

Simple and best practice solution for t^2+23t-14=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t^2+23t-14=0 equation:



t^2+23t-14=0
a = 1; b = 23; c = -14;
Δ = b2-4ac
Δ = 232-4·1·(-14)
Δ = 585
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{585}=\sqrt{9*65}=\sqrt{9}*\sqrt{65}=3\sqrt{65}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-3\sqrt{65}}{2*1}=\frac{-23-3\sqrt{65}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+3\sqrt{65}}{2*1}=\frac{-23+3\sqrt{65}}{2} $

See similar equations:

| -n=2n+9 | | 7x+6x-3=10 | | 1x+6=3x-18 | | 2z-1=28 | | 60/y+2=22 | | 7x-24=-10 | | 5p/p+5;=6p/p-1 | | 4-6(5+3p)=82 | | 4x+3=2×+11 | | y^​6/​y^​‑=2/​3 | | X+2/3+2x/5=x+2 | | 25-n=26 | | 8-9b=-7b | | 8-6x-2=-39+4x-15 | | -14=-5-v | | 3-2(x+3)=x/3-5 | | 3c-6=24 | | -5d=-6d+1 | | 15-8x=23 | | 10x-4-3=-14 | | 5(x-6)=4(x+8) | | n+31/2=7 | | 4x/3+5=1/3+1x/3 | | 3x-8=1x+24 | | 187=15+5/11d | | 4(2p-4)-3(4p+2)=5-3(p+3) | | 8+n=45 | | 9/4y-12=1/2y-4 | | y+45=77 | | -9/u=6 | | 7x-(8-3x)=42 | | x+32=236 |

Equations solver categories